Inverse Reinforcement Learning from a Gradient-based Learner
Inverse Reinforcement Learning from a Gradient-based Learner Authors: Giorgia Ramponi, Gianluca Drappo, Marcello Restelli Conference: NeurIPS 2020 Abstract: Inverse Reinforcement Learning addresses the problem of inferring an expert’s reward function from demonstrations. However, in many applications, we not only have access to the expert’s near-optimal behaviour, but we also observe part of her learning process. […]